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INTRODUCTION

The classical Picard's existence theorem.[uJ in the solution
of a system of ordinary differential equations has been extended by the
introduction of an arbitrary function. It plays a dominant role in the
generation of an iterative methodology. |

Two diverse points of view are employed for the justification
of the extended theorem., The first orientation begins to diverge from
the classical one at the point of recognition of the implication of an
arbitrary function in the solution. The second point of view‘féj has
its origin in the concept of a function space in whose postulated strue-
ture inheres a unique invariant of a contraction transformation of the
space into itself. This invariant is the solution of the system of
equations.

Both points of view contribute:to an>intuitive grasp of the
mode of proof of the extended existence theorem and the possible metho-
dologies that flow from these orientations. This is specifically so
relative to the more abstract considerations. One of the methodologiles
briefly discussed in the paper has been used in reference [5] based on a
speclalized existence theorem.

The paper consists of three parts. The first two degl with
the proof of the extended existence theorem. The first part uses classi-
cal notions in the generation of the theorem with the necessary deviations
to incorporate the concept of an arbitrary function in the sequence of
iterative solutions. The base of the developﬁent in the second part is
the concept of a complete metric space in which a contraction mapping of
the space into itself leads to an invariant which on.interprétation is-
the unique solution of the system of differential equations.' To gain
further intuitive insight into the theorem with its intrinsic methodology,

a geometric correspondence to the analysis is observed.
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The last mrt is concerned briefly with two of the many possi-
ble methodologies involving the arbitrary function. This part also con-
tains the derivation of an error function which measures the deviation
of any element in the sequence of iterative solutions relative to the

actual solution of the system of differential equations.

I. THE EXISTENCE OF SEQUENTIAL SOLUTIONS GENERATED BY
ARBITRARY FUNCTIONS

The initial phase of the paper will be to extend Picard's
existence theorem Eu] in the iterative solution of a system df differen-
tial equations through the introduction of arbitrary functions whose sig-
nificance in methodological development will be unfolded. Two distinect
processes in the proof of the extended existence will be given. This
part of the paper will involve the classical point of view fl] with the
necessary deviations relating to arbitrary functions. The second pro-

cess will involve a more potent abstract base given in the second part.

The Hypothesis on the System of Differential Equations: Let

Ay ,
d;fc = £ 15 -3 "fm): A =h1y3,-="y0m

be a system of differential equations with initial conditions

(1.1)

(1.2) [47‘00])(:)(0:7(:)’ 3 Azly2y--mym

R ' . +1 . .
The funct10n.j"‘, for any4 in some space..‘S""I , 1s single valued and

S‘h\-fl

continuous in a domain D<€ defined by the inequalities

(1.3) |X-Xol=a, |- (2 b*5 Xos Yuys-=- =14y €D

Finally for any two points (X, Yj---,Y™), (Xss~--> 4™)eDthe function £~
for any .« , satisfies the Lipschitz condition

(1aly) lj"‘:<x) Ys---Y"™)- :f"‘“(X;"{:.—---)’Y"")l( Ki‘Yt 71” for each <



= .
The continuity of £(x,4;---; y™) implies $“(X, 4,5 --- Ym) <M em D

where M is the greatest of the upper bounds of—f—', me=s F" om D . For
the purpose of the discussion,impose a more restrictive condition on x
namely that the domain D“—‘-: D pe defined by the inequalities,
(1.31) [X-xo[ Ay (40 q% 2 b5 (Ko Yioys---4c)e D'
where h is the least quantity in the collection (avg"‘:f\‘) -==) ,1_;_:-")

The set of functions{q/-(xjjj,:t,---,m} necessarily satisfy

the system of integral equations

X .
(1.5) 4*(x) :41:;) + f'-F‘EV: (=== y™W)] AV , 2 =125 m

Xo
if they also satisfy the conditions (1.1) and (1.2). The well known
iterative process in the determination of the unknown function 41‘; for anyx‘—,

implies the generation of the sequence of functions,

» :
(1.6) {41,,1 3 AL, M sm=010,2,---%

by means of an extension of the system (1.5), namely

(1.7) Yo(¥)= ”1,;f +L§‘[%'f,,§-,(v,---; YT W] AV s mzh,0- s LTy 2ym ],
Each element n1;f‘” of the ordered set (1.6) is generated from
its immediate predecessor fv/:_l (for any i) by the operational process
involved in the amxm system (1.7). Ultimately /5 (x) becomes a function
of the initial element ﬂ{:[x),(m=o), of the sequence (l.6). However the
function “1;"(x) is not defined by (1.7). It follows that each element of
the sequence is dependent on any undefined or an initial arbitrary func-
tion. For this arbitrary element "{: (x} we propose two assumptions:

(1.8) [/ "(x)s---, Y™(x)T is continuous (or even bounded) on |X-Xol<-4v
- YN T hd - -l
Ao
(1.81) [V:M]x:x,"‘ Teoy ? (%’ T ‘/(’-T)éD.

In other words the initial arbitrary functions are assumed bounded and

con
take on the initial values of the function %*(x) at X=X, on the domain D,
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Our purpose will be fulfilled if it can be shown that: (1) a

set of limiting functions,{\r‘:(x), 4= i3 ---;m} exist for the ordered aggre-
gate (l.6), (2) the set of limit functions are independent of the colle c-
tion of initial arbitrary functions {"12(;:}} (3)Y4'-(x) =1/é[x} satisfies the
given system of differential equations for an i, (L) Y‘:'(x) satisfies

the initial conditions and (5) are unique relative to the initial values

and for any choice of the continuous arbitrary functions. These state-

ments, in fact, constitute, in the rough, the extended existence theorem.

Proof of the Inequalities: The basis in the proof of an extended existence

theorem for the limiting function Y*(X)is to show that the following in-
equalities

Py h
(2.1) ,V:[‘)_zo)lﬁb 5 A=l 2,- “9’”1, M:I)ZJ“-}IX—X"[ﬁ/&

. . M Zm (Ik#Hm!
(2.2) | 4n(x) =415 (9]« ; [ X-Xol 3 M= I
are valid. The proof will be given by mathematical induction.

On the assumption (1.8) that the collection of initial arbi-
trary functions ‘f:(x) of the sequence (1.6) is continuous on the inter-
val |X-Xo|4 & it follows from (1.7) that for m =, , the set [ '(X,---
"1,""()(]_] is likewise continous on that interval. The necessary boundedness
of the above set is incorporated in the restriction that it is to satisfy
the inequality
(2.3) |’1’4'(XJ = U )| = b [K-Ko| 2h 5 <2 H2y =
In view of (1.8'), it follows that
(2.1) [1500 = 45 | 2 b [x-Xol2 &

Let us now assume that the expression (2.1) is valid for (m-1)

namely that
£ £ b
| Do) =15 [2 675 |X K| 2 A
If to this the fact that

l-j"(x,q:_--)t/’"/ﬁM ,D'¢D for any i ,
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is added, it then follows that
| £ (U s = = =5 0 | £ M

under the s ame conditions. With statement (1.7) in mind it further

follows that
(2.5) | (%)= 4,

4 . ‘-
-‘=£[J“‘[VJ ﬁm-,(vb--'o‘/,:f’,(d]al’u_‘_ M|[X-¥o| £ M 2 b* for any i

This is so since £ (as in (1.3') is given as the least of the quantities

_EL,_._- ,_%a? + A further implication is that
M
(2.6) | £ DX Mo t¥)s = = =5 AN (V]| = My 1x-Xo\ £ A

The second inequality (2.2) is, by comparable means, also
shown to be valid., For if it is supposed that this expression is true for

(m-1) s namely

< M-t } m-! __:me?’ _ e by
(2’7) {41/)1—1(’()_ 41/:-1()‘)\4 A/‘(!:_’)g lx Yol 5 ‘< ZZ":' ) lX )(o‘ L)

then the statement (1.7) generates
x < [) <, ’
CRIN B ORI PY U N (R AP A CRANEESE Al L0
Xo

The Lipschitz condition implies that
) 4
£
| 4(x) -5, < Kf [4° (0)- 12 ()| AV
where K, ({;°---, K™ = K « The inequality (2.8) thus leads to the in-
equality

X
-/ - m-= l’n-l hd
1500 - 15,00« BT [ vemad™ = BT () 2 M,

In view of the expression (2.1), the above inequality is true for s =1,

The validity of statement (2.2) is thus established.

The Extended Existence Theorem: A few classical facts int he form of

theorems plus the extended existence theorem will be formulated in this

section.
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With the definition [:3] of a uniform convergent series in mind
(which of course incorporates the condition that h is independent of x
we have tl.e

Theorem 1l: The series

“ »
(3.1) YL("}E%;*ZEA’:(")""*:(”] g 4=l ="y
T

is absolutely and uniformly convergent on the interval IXx-X.|<4v

Moreover since 4,(x) is continuous, for each i, implied by the
postulated continuity of the initial function 47 (xJover the smme x interval,
it is readily shown by induction that for any n, each element in the se-
quence of functions (l.6) is continuous. Hence
Theorem 2: The function Y‘(Yl’given by expression (3.1) for any i, is con-
tinuous on the interval |X-Xo| « & . In fact the theorem is also mani-
fest from the character of the series representing it over the interval.

Consider the expansion of 4 _ (K} by the identity
Ae(x) = MI(x) = 4 =4, () + 1 (x) - i)+ ===+ (x)-1° (x)5 €242 o0,

This leads to the finite sum,

(3.2) o (%] = 4, (x)+Z[‘f (=12 (][]

rz

A comparison of (3.1l) and (3.2) asm*oco generates the limit function
. ¥=1imit
(3.3) Y(¥ imit o, (x)

This allows the forrul&tion of
Theorem .3: A limit function “¢*(x)exists, for each i, of the ordend set
of iterative functions {4{,,‘ (¥} A= (2,-==9P1 § A= 0,/,?-,---§ p Every element
of the set is continuous on the interval \x-¥.\< &.

The following theorem is readily shown.

Theorem );l:: The limit function Y“(X) is a solution of the integral equation,
X ™ .
Yx)= o + f FELU Y0y X[ A5 € = bzy= -2y e
Ko

By means of definition (3.1) and the Theorem 3,

YK = L 4Ly = A +,e¢mf FLh o, (0=l AV

Mm> 00 m
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To show that
> o J'f"(u.’ -49“'77”")JU=/’€9’“’ 'f‘(ua -,,-'—:7 )

N - OO
use 1s made of the Lloschltz condition in the form

f[? (U Yy - -=s Y =F s ., -1 ) 4 < K[ SJitu)-5 fol| dv

Xo F=/

where K,---,IK™< I But
st a0« eaben e, €

where € 1s 1ndependent of x and&w €n=0 ., It follows that

M"”

o) Y= g q2(x)= Y, f“”’“v‘ (U s == =5 900,) LV

M e po
= Y ] f‘(,Y,—--,Y«)Ju S = ia-nn o
Xo
We now prove
Theorem 5: The solution Y‘(x) of the integral equation (3.4) is the

same as the solution a4¢(x| of the system of differential equations (1.1)

and satisfies the same boundary conditions, namely

(3.5) Y} =740); s e s [y OS] =[76], 0= Ho) 5 <= b2smmmacmr

Since ft-[uJ Y‘[U))--.)Y"’(y)]} as given in (3.l), is continuous
on R'CR , it follows that
4 ) 4 -
£ = %«%ﬁf‘&ﬂ---)v“)/«/ =S (X, Y e Y ™) et .

A X
So that Y“(x)and ¥<(x) satisfy the same system of differential equations
A 3 ¢ ) o
(3.6) o = 0% 30Js =7 370

To show that the limit function fulfills the s ame initial conditiors as
41‘:{)(/ s Substitute the value X=Xs in (3.l1). This leads tot he initial

stipulations

The uniqueness of the limit function is given by means of two
theorems that follow. The first theorem specifies uniqueness rele{tive
to initial conditions and the second asserts the independence of the limit

function with regard to the initial function of the sequence of iterative
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functions. The latter theorem, as will be shown in the sequel, is basic
to an approximation methodology.

Theorem 6: The limit function Y(x) = Lem y<

- ?

solution of the given system of differential equations with the associated

4z12,---,7is a unique

specified initial conditions. The validity of this theorem follows
irmediately from the observation that the specification of the Lipschitz
condition implies the theorem.
Theorem 7: The limit function Y‘(x) is indepencent of the choice of the
initial function “10(x) in the iterative sequence of functions
§"1,:(Y);:L=I,l,---,fmj-m;:o,/,).,---j..
Suppose that the two functions Y ‘(x) and Y “(¥) are the limits
of the respective sequences (410"9 Ay M, - -J
and (-‘7:, 7, ‘Z_",_..-). Each sequence
is generated by the respective initial functions ‘/:’, 7:' . By Theorem l,
each of the limit functions satisfies the integral equation
YY) = +ff‘[v, Nl === XYW dUs ¥ @I =9, +[o“@,w‘4,---,y Yo]] v
respectively, where it is assumed that the s ame inltlal conditions, EY/]x—x,>
= 7(':') subsist., Since the form of the integral equations are the same,
it follows from Theorem 5 that each limit function satisfies the same
system of differential equations (3.6) with the same boundary conditions
E%"(X)] -ve 3—(:) . Finally by Theorem 6, this system with t he assoc-
1ated boundary conditions implids a unique solution. Hence
2R TP TS W VN PN
The preceding theorems will now be assembled into a single
one with the hypothetical specifications incorporated, This summarizing
statement is an extension of the classical existence theorem (Plcard)
for the solution of a system of differential equations with its associated
boundary conditions. The extension specifies the solution of the system

as a limit function of a sequence of functions each of which (except the
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initial one) is a solution of a system of integral equations. The ini-
tial element of the sequence is arbitrary whereas the remaining functions
of the ordered set are ultimately dependent on it. However, the limit
function, itself, is independent of any specific choice in the replace-
ment of this initial arbitrary function.

Extended Theorem 8: (A) The continuous limit function Y ‘(¥), £242,-57 | x-x,|e b

of the sequence of continuous functions f*/,j’,(x)J <= Yd ==y M;m=z0 lX-Xé(ﬁ’z-v
is a unique solution (for each i) of the system of differential equations

£ ] . PRI s Ls -— <
_d4q* = £t y-- -54™) relative to the initial conditions E'Y‘(")]x:m" o)

TN

and is independent of the initial arbitrary function “f;'On} in the
sequence flfol"(x)} . Each element in the ordered set (except the ini-

tial one) satisfies a system of integral equations of the form

mM=(

. £ L X ‘ .
4701 ()‘) = 41(,) +J +Q(UJ lfq,-/)—--; ?w)&‘/c (B) The function
Xo
j-"(x)‘lj---:‘f""z,for each i, is assumed continuous on R'¢ R where the

domains R and R!' are defined respectively by the inequalities

— < -0-‘ L A ) / . .
Ix Xol --’v; |Y o) ,ﬁ- b 3 (Xo’%q”'"/ ﬁ)éR <R Tfle quantity h is
defined as the smallest quantity in the collection(a , b_ __._, 7"
M ™M

and where M is the largest in the set of upper bounds of the functions
£ “(xs "f;"--'a"f’"') .
Two items in the extended theorem are worthy of note,

(1) The hypothesis that the functions #+~ are continuous over the speci-
fied domain is too restrictive. It may be replaced by the conditions
that the functions be bounded with no change in the proof. However, the
hypothesis of continuity will, for this paper, prove to be sufficiently
useful. (2) The thf'ee properties of the initial function q:(x) in the
iterative sequence (4/;‘,41;'41:,__.), namely that "-/:'(y)is arbitrary (but
assumed continuous on the defined x-interval), that the remaining func-

tions (m>p) are dependent on it and that the limit function Y“(x) = Lomn 95 (v)
m oo 2
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cohtrawise, is én invariant relative to it, these properties are precisely
the ones which will allow the evolution of a general iterative methodology
in the solution of systems of differential equations. This subject will

be developed briefly in a section of the final part of the paper.

1T THE SPATIAL STRUCTURE OF THE EXTENDED THEOREM

An elegant mode in the formulation of the extended existence
theorem is to exhibit the more abstract foam which the proof evolves.
This more general presentation will generate a new point of view and so
give larger scope to applications of an iterative process in the solu-
tion of systems of differential equations,

Introduction to the Concepts: The concepts involved in the subject matter

are the notions of a complete metric space and the contraction mapping
of that space into itself., The definitions and s ome of the consequences
are taken from reference [2] .
A metric space consists of two items: a set X of elements
(points) and a single valued, non negative real function C(X,9); xyeX
called the metric (distance) of the space, This function satisfies three
axioms given in the a bove reference. If R is a metric space, a sequence
3 Xm3 of points € R is called fundamental if it converges to some limit
(i.e., if it satisfies the Cauchy criterion). The metric space R 1s said
to be complete if every fundamental sequence in R converges to an element € R.-
A mapping A of an arbitrary metric space into itself 1s said
to be & contraction if there exists an &< | such that

C(Ax, A4) £ A € (%,9) y X,7 € R

It is readily verifiable that a contraction transformation is a continuous

function. The following theorem is basic to a complete metric space[?ul°4§]2
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Every contraction mapping A defined in a complete metric space R has a
unique invariant point. Thus the equation AY =X has a unique
solution, namely the pointXx& R under the transformation A if it is

transformed into itsell, is LlLransflorumed uniquely.

The Space of the System of Differential Equations: The initial assump-

tions on the system of differential equations are the same as that given
in part I but with a more abstract orientation. Thus consider space
with the ordered(-'m-*l/— tuple (X, ¥;---, Y™ as a generic element (point)
(x,y) of that space. To each point is associated a collection of con-
tinuous functions ff"(X, Yymmy Y™y Rz Uy, - -,»m} on a region DC R™*

which defines the components of the direction element at any point (x,y)

in that region, namely

(4.1) "g%_‘: j—b(X} 73""") "/”) y“"'-'-‘;lj"“)m

with an associated set of initial conditions
- < . —— . /
(LI_.Z) [A’L(x‘)]x=)(p_ ZOI )4’-[-92’ sm J(x’)-"t/(o.)i—")y((::)eD'

The function 4 # for any i, is further restricted by a Lipschitz in-

equality,

(o 3) | F5(xs 1)~ f‘(""fx)lf-' Mat,, |10 17

and where M is defined as the greatest of the upper bounds of—j—',---,{-’én D.
On the basis of the above a ssumptions, the wvalidity of the ex-
tended theorem 8 will be shown in a different perspective. Again it will
be seen that a set of unique continuous limit functions of a segquence of
continuous functions (over a specified range) exist which satisfy the
system (l4.1) and the associated conditions (L.2) and which set is inde-
pendent of the collection of arbitrary functions,involved in the sequence,

as an initial element.
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Contraction Mapping in a Function Space D_,pqg]: Introduce the metric space
¢™ with a general element y(x) defined as a continubus function over a
specified x-range. The element y(x) is given by an ordered m-tuple of

functions

(5.1) Yx) = [A'(x)y - -5 1™0x4],

each: component of which is continuous for all x in the interval I1X-Xo|% o
and such that |4¢(x)s Hbo, R a positive quantity, £=1,2,~--,m,
The quantity A >0 is so chosen that the two conditions
(5.2) LX, 4()]ED 4f lx-xole and [Y2 42 |2 kb
(5.3) M=l
The distance function (’_, chosen for the metric space Cm, is

defined by the statement . '
(5.)  CLH,09, Ajs(x)];- mat, ;|4:- L] 5 <= 1025 =mms0m 5 1X-Xo| A

Yy o— . m
where 1-{” = (,%:,_.__} ‘/;m)) ? = (4’5’9"' 4/;.,) are any two points € C

Pinally, it is readily shown [2, P37] that the given metric space is com=
Plete. We may summarize by stating that the function space ¢c™ is a com-
Plete metric configuration whose elements are continuous functions over a

defined x-range.

If a defined mapping A is introduced into the space ¢ , 1t
will have to be shown that this mapping function is a contraction if the
basic theorem of a contraction transformation of a complete metric space
into itself,is to be applied. The procedure, in what follows, is to in-
troduce by definition just such a transformation.

The transformation A on C™ implies the operational equation.
(5.5) Y, (x)=RA45(x)5 45(x) a given point, Y (x) 1its image;Ys,peC™
The general relation (5.5) is defined to take the specific form of an in-

tegral equation,



.
(5.6)  1p(X) =4y 4 [ [VsHuual0)] 4V 5 m=b2ym=-

Xo

This operational equation implies a counteble ordered set of functions
(5.61) Ctolx)s M, (%) 5 Hu(¥)p - -]
Each element 9, (x) in the sequence is generated by its immediate predeces-
sor ¢, (but for the initial function ¥o(v) ) by the defined transforma-
tion (5.6).

The initial element Y (x) is manifestly undefined (arbitrary).
However, we will endow it with one property, namely that it be continuous
over the interval(X‘Y=|ﬁ'& . This implies, by virtue of statement
(5,6), that the remaining functions ¥, (%) 9.(¥J,~~- of the sequence (5.6')
are likewise continuous for the specified x-interval.

Since each element ﬁ(%)écﬁ_ is defined as an ordered m-tuple,

“In € c*is expressed as
= (Yn:o%;.a—-'aﬁ’r:") s fm €CT, mEo

It follows that the integral equation (5.6) may be written as a system of

componental equationse. Thus

(5.7) M) = 1% + [ FhA Wyme = AU 2= b2 o 5 M2 ek 2
Xo

We now show that the sequence of integral equations (5.7) represents a
contraction mapping of the comple te metric space ¢™ into itself.

The statement (5.7) leads to the expression
(548) T (¥)- 92 (x) = [x j[r(u, PEREIL d B A O ST S T KL
The appllcatlon of the Lipschitz Oondl.tlon (4+3) to the rlght member gives
(5.9) J [7 (Vs s 0= = =>4 )= T (% Va0~ = T ) | 4Y = J M”“a'fx,ﬁl%,-,- 42,1 v
= Mamayy N5 -5 ||x-Yel £ M A maty, (1, ,- 10,

The equality (5.8) thus turns into the inequality
(5.10) ‘41:‘()()- (")“‘M«?\W"’%x,_‘”fm( x)-q )] 5 1 4 s |X-Ka[s A
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where by the assumption (5.3) M.<l

Since the difference (Yi(x)- 1"‘_-'(,(;) of the left member of (5.10)
is continuous for any i, n and x in its given interval, it follows that
this difference has a numerical maximum for some i and x. So that the
expression Ma/;éx,l_“{,,‘;’(x)-‘/;l(x)' would still be £ right member of (5.10).
Thus the statement, derived from (5.10),
(5.11) My, |4e0x) = 1,5, (0] = M omaty, |\ (x) - 12 (X)| » M-A=I

is valid.
In view of the definition (5.L) for the metric € of C™, the

inequality (5.11) may be written as
(5.12) C(H%,%0) = MACHL,  45) 3 MA=<]

But the expression (5.12) is, by definition, the condition that the map-

ping function A as given by (5.6) or in the componental form (5.7), be a

contraction mapping of the space C™ into itself, In fact (5.12) may

take on the more general form

(5.121) C(A1:,,Aqs) 2ot €., 1), A=MA 1L o Avs,, Ry € CT

The space C™ may now be fully characterized by the

Theoreml: The set C™ of continuous function elements y(x):=[ﬁ%0,_-ul1*7£ﬂ
IX-XJ <« 4 is a complete metric space with an allaw able contraction

transformation which leaves the space invariant. The metric function

is defined by formula (5.L) and the contraction mapping by (5.7) which

generates the sequence

< Cly ) j:l.L---.fm' !x-v lﬁ,gv.
[‘16(!}5 ‘f’ (XJJ ~ - e >4 E] roj

-1
4

3
of continuous functions where the initial collection [ﬁ%((h--—:‘h??!ﬂ

is arbitrary but with defined continuity over the x-interval.
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The Application of the Principle of Contraction Mapping: The system of

differential equations (L.l) together with the associated set of bourd ary

conditions (L.2) is equivalent to the system of integral equations

(6.1) Y “(x) = (o) {;{ Vs 4ol - -, 11"‘(«/)] AU 5 €= L1, m

We rmust now show the type of relation that exists between the solution
of (Lel), (Le2); (641) and the s olution "{:(x) of the contraction mapping
given by the expression (5.6) or (5.7).

We repeat the s tatement of the basic theorem for a contraction
mapping A [2» p43l . Every contraction mapping A defined in a complete
metric space ¢™ has one and only one invariant point, namely that the
equation %4(x) = 4(x), y4(x) €C™ has a unique solution in C™ . This theorem
applied to the contraction operation given by the integral expression

(5.7) in its limiting form,

(6.2) Ly (x)= Yo —rf e ¥ KR AW UIELL? (" wl}dv

-n > o0

thus necessarily leads to the unique solution

(6.3) Y= L YE(K) 5 [X-Kols s =25 m

and which satisfies the 1n1tlal conditions

[ Y‘(X)]x- Tt

(0)
The symbol Y‘(x) denotes the 1limit function. Stated otherwise, the

sequence of functions

(6.04) {"f,f,'(x)j AZHY ==y My M= O, 2= - '5/X‘Xol‘/£’3 "1;’{)()5(‘1;,—"51{::)6 c™

with %,°(x) arbitrary but continuous, has (by virtue of the fact that C™

is complete space) a 1limil and since the mapping function (which gener-

ates this sequence) is a contraction, it follows that the limit function
Y‘()(}is unique and so independent of the character of the initial element

4(¥) for any i.
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The relation between the unique limit function \Y‘(X)=ﬁ%::;ﬂzﬁfl
of the sequence (6.l) and the unique solution 4(x) of the system of differ-
ential equations (L.l) and its associated boundary conditions (L.2), is
now readily established. If the integral expression (6.1) is viewed as
a contraction mapping, namely ¢*(¥)=H#7%X then the unique limit function

Y“(x) of the sequence (6.l) must be the same as the “Y*(¥ of (6.1), since
any arbitrary sequence in a complete metric space with a contraction
transformation leads to a unique limit. But the solutionx%‘@d s for anyia
of (6.1),now viewed as a system of integral equations, has the same
unique solution as the solution ¥¢(x/ of the system (L.1l), (L.2). It

follows that
(6.5) YOI =), a=bz-=msmliokoled s [yep], o= [Ai], = 4

A final observation is made to emphasize (a fact noted more
than once) the significance of the initial arbitrary function “(x) of
the sequence (6.l4) and which thereby also allows us to make the necessary
connection with the extended existence theorem of part I. The elements
in the sequence (6.l) of approximate solutions, generated in order (but
for the initial element) by the contraction transformation (or the s ystem
of integral equations (5.7?, are, as has been noted, dependent on this
initial function. Its arbitrary character (modified by the demand that
it be continuous) implies (by the properties of the C™ space) that for
each choice of the initial function+4,“(¥x) a new sequence is evolved and
that there exists as many sequences as there are choices. However, wWe are
told that the limit function for any sequence is the same (unique), namely
that Y4(x) is invariant for every sequence generated by the contraction
mapping and the initial function. This observation permits us to write
verbatum the extended existence theorem of part I and to assert its val-

idity.
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A Geometric Interpretation of Contraction in C : A spatial representa-

tion of the analysis involved in the formulation of the extended theorem
will be given in what follows. The purpose is to point towards an iso-
morphism whose existence allows an intuitive insight into the analysis
and leads to more extensive analogies in application.

The general element 11()():[’1'(1},—--, "{""(X)] of the metric
space C™ is a continuous curve C given by the m parametric equations
(7.1) Ye=f*(x) 5y £=1p2s-==5m
where [_‘1"(%)],(___,6"—" "/(':’”4.-.-.1,-—-,«1 is an initial point on C. The para-
meter x satisfies the inequality Xo-A =X<x.+4 and is the range for
which the curve C is continuous. The metric function € of ¢™, given
by (5.Lt), is the distance between any two points, say Yp and Ys , on
the curves Cp [’1;‘= ‘/:(&) and CsL[Y5 = 95(x) respectively and whose
coordinates satisfy the definition (5.l) for{ .

From the fact that C™ 1is a metric space, it necessarily
follows that the space is also complete, namely that if a sequence of
curves (Ca, C,, Clo'") converges to some limiting curve C ( a fundamen-
tal sequence) then C &€ C™ . A metric space is also a complete space.

If on this complete metric space an independent transforming
constraint is imposed, namely a contraction mapping A of the space into
itself, the structure of the space becomes so concretely organized that
for any arbitrary fundamental sequence of curves in the space, one and
only one limiting curve exists belonging to that space. This limit
curve is the unique invariant of the contraction mapping function of the
complete metric space C™ transformed into itself.

If the transformation A is specifically defined by the system
of integral equations (5.6) or (5.7) (and this definition has been justi-
fied) then for any arbitrary curve Co , given by % 4 “(X), c=i,1, --o,nm

a convergent (fundamental) sequence (Co, C,,Cap-- ") of curves of C™
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is evolved (generated by (5.6) or (5.7))whose limiting curve C is the
unique invariant of the contraction mapping A of c™. Thus to any arbi-
trary curve C, will correspond a family of sequential curves Ce, <= 1y2,---,m
(generated by the mapping A) whose limiting curve C is the unique invar-
iant of the transformation. The sequence of curves (including the
initial one) and the limit curve are all elements of C™.

If it is further postulated that the initial arbitrary curve
passes through a given initial pOintEV‘1mJ;:xE‘Z;z,,L:b--3nn
and that Co LY, ’-”/:(xﬂ is continuous over the interval [{x-x.|<4
then the sequential family becomes a pencil of continuous curves which
converge to the unique invariant continuous curve C which likewise passes
through the given initial point. To each choice of the arbitrary curve
will correspond a sequential pencil of curves and there will exist as
many pencils as there are arbitrary continuous curves on an interval,
But whatever the choice of the arbitrary function (and so of a correspond-
ing pencil), the limit curve will be invariant. The limit curve will be
a function only of the contraction mapping. The limit function is thus a
part of the structure of the space ¢™ gince it admits into its structure
this type of transformation.

The final step is to associate the invariant curve G of C

and given by the parametric equations

(7.2)  Y*= Y0 = e (X)) el m

»n > ©0
with a curve, given by
< = “ . et ot
(7.3) {47{ = 9 \[Y.) Jf—’é("”f]x:,\fg‘ N P R
X = X

whose line element is spcified by the &l rection

(7.4) i‘f = f (X 4= ™), LA T =y, = 7,0,
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at a generic point (x,y), y;.(ﬁ -u,’V“U of the s pace r™t . It is
supposed that the function 4 fulfills all the conditions of the initial
hypothesis.

The equation (7.lL) has for its unique solution the curve in
R™*  given by the equations (7.3). This solution is correpondingly
expressed implicitly by the system of integral equations (6.1). This
implicit statement is given explicit formulation by the converging se-

quence of apporoximate solutions [ﬁg(x{,‘%‘hj,—-—;] of the system of in-

tegral equations (5.7), namely
(7.5) Y )T ezm ) 5 o 2

If now the same system (5.7) is viewed as a contraction map-
ping of the complete metric space C™ into itself, then the invariant

curve . ; .
Y=Y, DY ] = [ xane = 1
of the transformation is also the limit of the pencil of curves (Co,c,,——-)
given by the same fundamental sequence [Yo(*),*(X),---] . So that

(7.6) Nk = L qslx) = 1400 5 [ 0 eax™= g

where the initial arbitrarytfunction.'7§YX) no longer appesars.,

The two curves (7.2) and (7.3) of different origin and differ-
ent spaces are shown to be the same unique curve. The curve C which in
space C™ is the one and only one invariant of the contraction mapping is
in the space R™*' the limit of a sequence of curves generated by the

solution of a system of integral equations.

ITT. METHODOLOGICAL DEVELOPMENT
The method evolved in this part in the solution of any system

of differential equations which fulfill the conditions specified by the
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hypothesis in the extended existence theorem, will depend in part on the
mode of choice of the initial arbitrary function 41;(,‘). Two versions of
the same method will be developed. The process is one of many possible
modes of solution justified by the extended theorem.

The method to be discussed has been used [5] in the iterative
solution of the N-body problem but with a specialized existence theorem
formulated for the special case. This part of the paper will consist in
the discussion of methodology followed by the forrmlation of a difference

and an error function for the solution of the system of equations.

The Methodology: It is assumed that for the given system of differential

equations and boundary conditions

dy~ L.
(8.1) 'ﬁ =f (XJ"I.;—-—:V'") 3 f‘{"(x): 7(:);;./ AZy——=ym ,
the hypothesis involved in the extended existence theorem is satisfied.
The solution 4f(y) is continuous on [X-Xo| « 4 and is given as
w— ! L
M) = ez A,(x)
where the continuous function 4{’:(;() is an element of the complete metric
space C”', This element is generated by a contraction mapping of C”™ into
. “ < .
itself such that an iterative sequence [ Yo(X), %(xj)-__j is formed, each
element of which is dependent on the initial function "/o"(x) . A variety

of modes of definition may be used to formulate this initial function.

Consider the three distinct sets of solutions

. N ‘

(8.1)¢ VL(X/ = VPT+£Df‘(UJ 9s-~-) ‘f‘"j/l/ g L= lymnny m
, rX ~ _ .

(8.2)" Yglx) = %o LI T )5 y=nre, B

¥ 1
(8.3:' 7;(Y)= (Z‘Pfx'f‘(u.)vm,—-ﬁ(f:)duJ’VI:ol/)zJ""
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‘respectively of the systems of differential equations

R S

K o -
(8.2) dX* = 54(XJ 1((,—---;7;")

P g R )

The functions dféOU,:z;} ﬁgf(X) will be called respectively the
solution or limit solution, the finite serial solution and the iterative
golution of the system (8.1).

Two variations in the method to be presented are open in the
generation of the solutions and their relations. The first variation is

to start with the solutions (8.1)!' --- directly and the second by con-

sidering the derivatives (8.1),--- .

(a) Let

. w A 'k

“ix] = Q4 X =ly=-- ; o
) )= 2 ARxt s ezhomm s

be the power series representation of the solution‘j‘bﬁ of the system
(8.1) on the interval [X|<.{. . The gerality is not diminished if we
write X,= o0 . The finite serial solution of (8.1) or in the form (8.2)

may then be written as
(8.5) ;1.;("} = a';z xR 5 ¥=M+ @, B rixed positive integer.
=0

F or each n, an element (a partial sum) in the converging sequence
u ~ YR/ -
(8.5) ( H@.)Z%qa %y;’a-—)

is generated by the expression (8.5). The limit of the sequence of
approximate solutions sz(x) of the system (8.2) is the solution
of (8.1), namely

8.6 “(¢) =1imit « “(x

(8.6) 1°(Y =Limit «7%(x).
From (8.6) it follows that
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(8.7) aj{‘fy/’// i AT K]

N2 oy

If the elements 7 (X} in the fundamental sequence
(8.8)1 C 405 4 ()5 = = =5 (b ===
are derived from the contraction mapping (8.3)! then by the extended

existence theorem

(8.8) o (x) = L (%)

From (8.8) we get .
XY _ . C(qm(/\’/
(8.9) wra -/,‘f,:./.’;"o T

Equate the right member of 8.6) and (8.8), namely

N> v g,

or in finite form

(8.10)! 4{;{)9 = (’J“’ € +C5(x)1 for any L and Gz

Por n=o0 define

8.11) [ ‘7,:,,,,(")1":0%‘ ?(;'(X} =420x) 5, Lépipt],, .7 € (x) =0

for all x in its interval, It further follows from (8.10) that
(8.11)! /&-’VV" QM (x) =0 4 for ang < and Rz0

+

Equation (8.10)!' allows a determination of the iterative

solution 7,:()() of the seqience (8.8)! provided the initial function

‘1; (X) is given, A specialized form of this function is given by

(8.11), namely Y,“(X) = '7;;()() . It is manifest that the larger the
value of @, the closer is the iterative solution to the actual solution

4 (x) of the original system (8.1), for a vixed n. It is also
obvious that the mode of generation of the initial function 71&’()6] =Y (x)
by a finite power series is but one of many possible ways in its generation.

(b) The second mode in the formulation of the solution ¢¢(x)
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of the system (8.1) is to start with this given differential system and
to equate the limits as given by (8.7) and (8:9). Thus

8.12) A L b A0

N > SO d)( A O d)(

or in the equivalent form

(8o13) %f‘(x,v - VM) = -‘f’::: 'f (X ____D«?;'} R L=l-= =y,
In finite terms this becomes ‘ .

(8.1L) sy tm) 2 F oAy o 7) + [E7 K]y = -
where '

(8.15) phurgiut [E’ (X)] X e ;(xj =0

The expression (8.1L) is a system of m equations which may

be solved for the m unknown functions %, (X),---, 47 (X) in terms
of the remaining quantities X, ;1—;') --- "id, 5 (&d.), -y (E€T2)

Thus the approximate solution is given by

(8.16) ML) = Q6T T0, (€)5--- €3] = %:(s(x)i*:"“"”“

where the order of the approximation is given by the value assigned to @
which determines the initial function Y, “(x)= 473(;() . This
second process has been used in ref. [57 to generale the iterative solu-
tion of the analytic N-body problem.

For any specific problem the inverse form of (8.16) may be
found more emenable to resolution, namely the expression of

— ' p ,
in terms of "1;,0 ~ -y ?1;" im terms of X, 7"""‘?}1729(63")9""(67) . Thus
(8-17) ;‘_1;0() = qJEX)q:n;——“) :J(é;, )/"'"') (&?)Ij 5 x',: I_,--—)rn’

< /
where the quantities [éa.(")] still have the same meaning as that
given by (8.15).
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The Difference and Error FPunctions: In the previous section the function

6,:,6 (x) was defined by the expression (8.10)'. Our purpose is to

characterize this function and to get its measure. This will allow us to

determine the rate of convergence of the iterative approximations -‘1,: (x)

to the actual solution 4 “(X) of the system of differential equations (8..).
Suppose the quantity 5,:;,.0()‘) is given a more consistent

symbolism relative to its definition (8.10); namely
3 - £
"1 = + } 4 <

The quantity é:,) m+( Wwill be called the €& or the difference function

between the two elements "1;: and "_7.,,,41(3

of the respective contraction
“~ “ . 27 A 7 & —
("19 s 1, -~ -3 "/(;;',—--) and partial sums ("f@,, 1+ ,---)"1@,_“,—--)
converging sequences.
For n=o define, as has been done, the &~-function by the ex-

pression

A - ~ - .
(9.2) [€mdd, ..z €nm=0 for any < , Ix| %4
It follows from (9.1) and definition (8.5) that

(9.3) A 6/:1#-@ (x) =0 for any < 5 IXI €A

oo

An expression for the difference function is readily derived
in terms of the metric of the complete metric space cC™ . By means of

definition (9.1), the statement
MMXJ(_’V:,(Xj- ?;(X)' :rmaq!x)(_‘ (. (xj\ y ¥=m+@

is valid. In view of the definition {5.l4) of the metric € between two

elements "1:, y 47; e C™ , it follows that
<

(9.l4) Conyy = My, | €0,y 0]

where € is defined as

m,
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(9.4)! EM;X = C(1o '7;

An inequality is thus generated from expression (9.1) with the use of
(90)4.); na.mely .

4 <
(9.5) TAE A0 +C x

A useful formula (a generalization of the inequality (5.12)0

in the comparison of any two elements’f; and‘7:+7,’r=.o,giv--- of the
iterative sequence [ 4, (x),4,(x), - ~-] is unfolded from the defini-
tion e “ |

}'7m()‘)"7m4—r rl' Enry v (K) y vz 05152, -

It follows that

< < - £
fmd/%x,b (7," - '{/m-r( = m%’blém_,m.pr(

But by the definition of contraction mapping A of ¢ into
itself, namely

(J(H‘, -'“q 7l ) = OLF((Y':"’ f:‘*”“)’) Af;.,;%,,tr_,e C’”:: &= MA<

and since

en, m+y = (o(’f:—,, mw) C(AY., ) F,A’/rwv 43
it follows that

(9.6)‘ PM_;M"'T = A (a(‘((:.‘, Y:—PY—I):d\ em-l,m*"\f-' 3 d\ = M’e\:“

We thus have that
(9.6) MWX&‘ mm-ﬁr(xJ[‘d —ls MY A= M,&Ll 5 v=0,1,2, -~~~

Expression (9.6) in turn may be put in the form
o <
(9.7) m a/")/r" l e’")’""" (x) lf MWX,/— ‘ ém—lo N+ (x)\

Expression (9.6) or (9.7) is a generalization of the inequal-
ity (5.12)!'. Thus if (5.12) is written in the form
ClA Al ) =L C(15 47 )

where for n-l we write n (n-1-» n). The above form may then be expressed as
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’W(CV}/X,‘_ \ MM+l (J \ L /Wla/)éx . :_”1 (x)

then if r=1 is substituted in expression (9.7)sthe same inequality for
the difference function is formed.
Consider now the elements (the partial sums) of the sequence

B

(41(‘3-5 2'1;“ , ‘g—“_’_,_ _ ) as generated by the finite power series (8.5).

For any two elements ¥
-— y . 7 ¢ -— L m - -
“1}4-7 Za ‘1; = 42" fs Tyir 1% € C™s =0 b1,

=0

the difference is given by

4’4—7'- 7* E«,fl&x*? for amy X amd<.

This leads to the irequality \
— +v
v g A ,&
MWX,L ld‘/d’*Y 7&.[ — E {a,«“X l
R=y+!
Since lxle,ﬁ_ and in view of the definition of the & - function, it fol-

lows that

awr
(9.8) moet, | €

= a5l A%
J’+r, \ &:w‘ /"l

Combine inecualities (9.7) and (9.8) and transpose to get
(9.9) Maty,, | €0, mer W & Mbe et €5 oo K- omaryz]€ 2 |

+Ela \%4 g A= Ipmms M y=m4 B, B205 012012, - 3h= Mh<! 51X\ £ 4o,
=+

In terms of the metric of the space, inequality (9.9) becomes

(9.10) (Dm,/va 2 MAe Conety megar - a«, rer + 5 a 4‘ 4{/@
= b4
Expression (9.9) is a measure of the maximum difference between any two
< < . . <
elements Y *(x) and ‘/m+r(xj of the iterative sequence (4, ’1,‘;_-..)

in terms of (1) the maximum difference of two elements "{m‘:l and 41,”_‘“,
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of the same sequence (the immediate predecessors of the former elements),
(2) the maximum difference tween two elements q;;r,fy;, of the partial
sum sequence ('ﬁﬁs, ﬁ;i', - - and (3) the finite sum of the prod-

uct of the coefficients and the radius of convergence h of the series

109 = ez 7700 Eeir

It may be noted, briefly, that expression (9.9) may also be
interpreted as an error function of the actual solution <4 *“(x) of the
given system of differential equations relative to any term in the itera-

tive sequence. Thus if we define

(9.11) EX(x) = Y- ), w0,

then since ) ' ’ i .
- () = 7 W)= 1,8 )+ 1) 70 = €5 (X]= € (%,

6 Ny N+7

it follows that

(9.12) ﬂ"’laz;l),,,,‘ﬁf,(x}-' EK:N(X)‘z Ma/ﬁ,(,c e;,m-f-r

If now expression (9.9) is used we get the error function

(9.13)  Makn.|Enld-€qr (1) w
v
< MAmag, €5, m-wl’Mavf,,Jé;,ml 32 (gl 4%

= §t!

That expression (9.11) is a measure of the error function relative to

the actual solution Y*(Xx is manifest, since the

L €20 €1 (0] = [lerm €ii0x) b &5, )

N o

A OO
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